
Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 1 of 44

Putting the fun into
functional programming:

Exploring Scala for teaching functional
programming and writing securely

Keoni D’Souza
921231

Submitted to Swansea University in fulfilment
of the requirements for the Degree of Bachelor of Science

Department of Computer Science
Swansea University

Friday 15th May 2020

Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 2 of 44

Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 3 of 44

Declaration
This work has not been previously accepted in substance for any degree and
is not being concurrently submitted in candidature for any degree.

Signed (candidate)

Date Friday 15th May 2020

Statement 1
This thesis is the result of my own investigations, except where otherwise
stated. Other sources are acknowledged by footnotes giving explicit
references. A bibliography is appended.

Signed (candidate)

Date Friday 15th May 2020

Statement 2
I hereby give my consent for my thesis, if accepted, to be made available for
photocopying and inter-library loan, and for the title and summary to be
made available to outside organisations.

Signed (candidate)

Date Friday 15th May 2020

Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 4 of 44

Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 5 of 44

Abstract
We are often told that anyone can program – but they are not always so

specific. Some ways of programming are easier than others – it is common
to focus on just one paradigm, such as object-oriented programming,
crafting your code to align to the concept of so-called objects containing data
(as attributes) and methods. However, other ways exist, some that can
encourage the programmer to think more deeply about how they code.

Functional programming uses functions solely through application and
composition: favoured are returned values, rather than changing program
state. Scala has embraced this side, whilst still maintaining ties with Java’s
object-oriented style. Adjusting one’s mindset can be difficult when stuck in
one’s ways, so it might well be useful to suggest evolution – it should be
posited – as opposed to revolution.

The multi-paradigm nature of Scala allows for a gentler transition
between the two schools of thought (at least in my experience) so this project
will look at the ability of Scala in communicating the concepts of functional
programming most effectively to a new, student audience. I will analyse
previous efforts in teaching Scala, highlight notable functional approaches
and, in addition, consider its viability in verifying programs.

I will then use a lecture and practical session I conducted to introduce the
basic concepts and transitionary notions and find out if students were more
receptive to this language over Haskell when approaching the functional
programming paradigm.

With active developers highlighting features such as static typing and pattern
matching, and many expressing that it solves concurrency in a “safer way” and
“makes [them] a better engineer”, [1] Scala really puts the fun into functional
programming…I

- Keoni D’Souza, Gregynog Colloquium, November 2019

I Whilst I will not claim here to have originated this phrase, this was from where and

when it was first uttered – for the purposes of this project – from my very lips to a(n)
(mandatorily captive) audience of my peers.

Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 6 of 44

Acknowledgements
Thank you to my family for letting me get on with it.

Thanks to Dad for proofreading.

Thanks to my friends for supporting my Scala crusade.

And thank you to my supervisor, Monika, for making sure this didn’t end up as a
four-page project.

Dedications
For Mr & Mrs Padilla. However this ends up, it’s a shame I can’t share this with you.

Typographic notes
Paragraph text typeset in Merriweather Light, 12pt.

Headers typeset in Merriweather Sans, 18pt, 16pt, 14pt, 13pt and 12pt.

Code fragments typeset in Fira Code Light, 11pt, 10.5pt and 10pt.

Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 7 of 44

Table of Contents
Abstract ... 5

Chapter 1 / Introduction ... 9

1.1/ Project motivations ... 9

1.2/ Project aims ... 10

Chapter 2 / Background & Related work ... 11

2.1/ Scala at a glance ... 11

2.2/ History of the language ... 11

2.3/ Significant features of Scala .. 12

2.3.1/ A multi-paradigm approach ... 12

2.3.1.1/ Object-oriented programming .. 13

2.3.1.2/ Functional programming.. 13

2.3.2/ Aesthetics ... 14

2.3.3/ Pattern matching ... 14

2.3.4/ Algebraic data types .. 15

2.3.5/ Existence alongside Java ... 16

2.3.6/ Static typing and a powerful compiler .. 16

2.3.7/ Option handles null effectively .. 17

2.4/ Motivations for teaching .. 18

2.5/ Related work ... 18

2.5.1/ Teaching Scala to younger students .. 18

2.5.2/ Scala in higher education ... 19

2.5.3/ Describing general concepts with Scala .. 19

Chapter 3 / Specification and planning ..20

3.1/ General considerations ... 20

3.2/ Case study outline ... 21

3.3/ Evaluation criteria ... 21

3.4/ Planning the project ... 21

3.2.1/ Steps and milestones .. 22

3.2.1.1/ Part I: Background research .. 22

3.2.1.2/ Part II: Setting up and monitoring the project 22

3.2.1.3/ Part III: Planning the case study ... 22

Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 8 of 44

3.2.1.4/ Part IV: Carrying out the first part of the case study 23

3.2.1.5/ Part V: Carrying out the second part of the case study 24

3.2.1.6/ Part VI: Evaluating the collected data 25

3.5/ Mapping out the project ... 25

3.6/ Risk analysis .. 27

3.6.1/ List of hazards .. 27

3.6.2/ Risk assessment .. 28

Chapter 4 / Implementation .. 30

4.1/ Introductory Lecture and Practical Session ... 30

4.1.1/ Summary ... 30

4.1.2/ Qualification of content .. 32

4.2/ Advanced Lecture and Practical Session .. 32

4.2.1/ Summary .. 32

4.2.2/ Qualification of content .. 33

4.3/ Data collection .. 33

4.4/ The coronavirus effect ... 35

Chapter 5 / Conclusions .. 36

5.1/ Achievements ... 36

5.1.1/ Introducing Scala into higher education .. 36

5.1.2/ Producing an educational resource ... 36

5.1.3/ Getting students to consider functional programming 36

5.2/ Analysis ... 37

5.2.1/ Addressing the aims ... 37

5.2.2/ User interaction ... 38

5.2.3/ Problems with multi-paradigm support... 38

5.2.4/ Obstacles and their management .. 39

5.3/ Further work ... 41

Chapter 6 / Bibliography ..42

Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 9 of 44

Chapter 1 /
 Introduction

Scala is a language noticeably still within its infancy, not coming into
fruition until after the turn of the century. That should not mean that its
presence should be diminished though, especially when comparing it to long
relied-upon languages (like C++) or the popular (such as Python). Scala
sought to address criticisms of Java and act as a better, more concise
alternative and this project seeks to find out what is great about the language,
whether we should be encouraging students to become proficient in it, and if
it is safe enough to be considered for program verification.

1.1/ Project motivations

Two years ago, I was introduced to the functional programming universe
through the CS-205 module on declarative programming at Swansea
University. It covered two languages – Haskell and Prolog. At the start of my
computer science degree, we were introduced to Java and so I became used
to an object-oriented way of thinking (I also looked at OOP techniques in
Python at GCSE and A Level). The transition was, therefore, quite a difficult
one for me as it involved a more mathematical approach and, for me at least,
proved to be quite a high barrier for me to breach. The purely functional
nature of Haskell failed to provide a suitable level of assistance.

I was able to leave the module (and the often traumaticII world of
functional programming) behind – that is until I became accustomed to Scala
during my placement at ITV last year.

Although multi-paradigm, ITV use functional Scala to program their
backend microservices: after my first six months looking at front-end
development, I was exposed to functional programming yet again – but my
experience was noticeably different this time. Perhaps it was because I had
some prior knowledge on the subject, but I found it easier to understand all
the functional concepts, almost feeling like I was learning them again as after
my exam on the declarative programming module, I tucked away all that
knowledge deep somewhere out of my consciousness.

II At least, to me, I should clarify – though a not inconsiderable number of people with

whom I have spoken have shared similar feelings.

Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 10 of 44

I realised that, most likely, its appeal was because of Scala’s Java-like
syntax. I had already two years of Java experimentation, so the initial barrier
of entry was not too high, especially in comparison to Haskell. It wasn’t long
before things became much more complicated through the use of Cats – a
library providing abstractions for functional programming [2] – but I ended
up in a position with a comparatively greater understanding than when I
approached the more challenging concepts a year prior in Haskell.

The idea that others, maybe in a similar position, were possibly looking
for an easier transition to functional programming entered my mind: what
if, I thought to myself, students were able to look at the functional side of
Scala first and use it as a gateway language to progress onto the purer
Haskell? My experience proved to humour this, and so this experiment was
considered.

This is the motivation for this project: I plan to carry out a feasibility
study, somewhat, to determine if touching upon Scala is an effective way to
improve the understanding of the ideas of functional programming.

1.2/ Project aims

It might be the case that, to this student, Scala appears to be a clean
language for many purposes, one that should be a cause for consideration,
but contextual concerns should be studied: how well does it perform when
teaching functional programming and when verifying programs? Thus, this
project seeks to achieve the following aims:

• To research and present the programming language Scala:
o What can it do?

• To look at Scala from a teaching perspective:
o How can it be introduced to newcomers in an accessible fashion?
o Will the language add to students’ understanding of functional

programming?
o Which is the best order to learn the languages Java, Scala, and

Haskell?
o Could Scala be added to or replace Haskell in the CS-205 module?

• To explore the language’s security:
o Can it be used to write safe programs?

These aims will be expanded upon later in 3.1/ General considerations.

Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 11 of 44

Chapter 2 /
 Background & Related work

2.1/ Scala at a glance

Scala, a portmanteau originating from scalable language, [3] is a
programming language designed to appeal to a wide range of tasks, capable
of providing a suitable environment that can be scaled from small-scale
scripts to larger system applications. Though not an extension, it maintains
an interoperability with Java, sharing “basic operators, data types and
control structures” [4] and combines the worlds of functional and object-
oriented programming, producing code that generally matches Java’s
efficiency in compilation, whilst allowing for a codebase with a significantly
decreased verbosity.

2.2/ History of the language

Originating from Martin Odersky, Scala was designed in 2001, along with
his peers at EPFL (École Polytechnique Fédérale de Lausanne, Swiss Federal
Institute of Technology in Lausanne). Odersky revealed an interest with
functional programming towards the end of his stay at ETH Zurich
(Eidgenössische Technische Hochschule Zürich, Swiss Federal Institute of
Technology in Zurich) in the late 1980s, where he undertook his PhD with
the inventor of Pascal, Niklaus Wirth.

Remaining in the research sphere, he became a university professor in
Karlsruhe, Germany and started off working on the theoretical side of
programming with Phil Wadler of the University of Glasgow, where he was
informed by an assistant that there was a new language coming out that was
portable, had bytecode, ran on the web and had garbage collection. [5]

What followed was Pizza, a language that drew generics, higher-order
functions and pattern matching from the functional programming space and
implemented these features on the Java Virtual Machine, or JVM. It came out
in 1996 – the year after Java’s initial release – to moderate success, proving
that functional programming could have a future alongside the object-
oriented world of Java.

The problem with Java, they found, was that it had firm limitations, and
Odersky thought that there were better ways of doing things – the right way,
so to speak, at least in his mind. So, instead of trying to make Java better, he
and his team sought to produce an alternative; it still had to be compatible
with the existing Java infrastructure, like the JVM and its associated libraries,
as creating a language from scratch would be impractical.

Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 12 of 44

Funnel was the result – but its purity necessitated a steep learning curve
and was both practically inaccessible to beginners and tedious to experts.
They decided to start over again and find a middle ground between Funnel
and Generic Java, something that Odersky worked on in the late 1990s and
which formed the basis of generics in Java 5 six years later. The language that
they started to design in 2001 became known as Scala, with its first public
release in 2003. [6] A moderately extensive redesign followed in early 2006
as Scala v2.0.

Scala has grown in popularity ever since. It is currently the twelfth most
active programming language on GitHub and the fourth most highly paid
programming language globally according to the latest annual developer
survey by Stack Overflow. [7]

2.3/ Significant features of Scala

Scala was designed essentially, it could be seen, as a better version of Java.
Indeed, its syntax resembles Java and classes in Scala are able to call methods
and objects from Java, as well as inherit from its classes and implement
interfaces. [8] There are numerous other features of Scala that are worth
delving into, many of which are detailed below.

2.3.1/ A multi-paradigm approach

Scala is an object-oriented language and can be considered pure, as every
value is treated as an object. But not only that, it is also functional, because
each function is considered a value (by transitivity, every function is also an
object since all values are, too). Thus, its multi-paradigm nature can build
upon these skills, as well as knowledge of imperative and logical
programming. [9] This does, however, mean that there are many more ways
of doing the same thing, but this will always be the case in any language, and
as long as one way is followed (as should always be true anyway) coding can
be performed in an effective manner without too many complications arising.
It is for this reason that newcomers are misled into thinking that Scala is a
difficult language with which to overcome.

Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 13 of 44

2.3.1.1/ Object-oriented programming

Borrowing from Java, Scala can provide an environment for object-
oriented programming. As an example, were we to design a class that models
a rational number, one might introduce a couple of entities:

class Rational(x: Int, y: Int) {
 def numerator = x
 def denominator = y
}
Figure 2.1, OOP in Scala: Rational is a type and a constructor
that creates elements of type RationalIII

2.3.1.2/ Functional programming

Scala delivers when programming functionally with tail recursion, for
example, where a function calls itself as the last execution. A summing
function can be expressed using an accumulator that calculates a running
total:

import scala.annotation.tailrec

def sum(list: List[Int]): Int = {
 @tailrec
 def sumWithAccumulator(list: List[Int], currentSum: Int): Int = {
 list match {
 case Nil => { // if there are no more numbers to add
 ???
 }
 case x :: xs => sumWithAccumulator(xs, currentSum + x)
 }
 }
 sumWithAccumulator(list, 0) // Initiates the function, starting at 0
}
Figure 2.2, FP in Scala: The @tailrec annotation tells the
compiler that it should only run if the following function is tail
recursive.IV

The compiler also supports an optimisation technique called tail call
recursion, making Scala code compile faster than Java.

III Based on the example here: “Scala Tutorial | Object Oriented Programming”

[https://www.scala-exercises.org/scala_tutorial/object_oriented_programming].
Accessed October 2019.

IV Modified from the original here: Alexander, A. “Tail-Recursive Algorithms in Scala”
[https://alvinalexander.com/scala/fp-book/tail-recursive-algorithms]. Accessed October
2019.

Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 14 of 44

2.3.2/ Aesthetics

It has been argued as an “elegant” language – Scala has first-class
functions which not only allow for defining and invoking, but also for passing
around as values when expressed as unnamed literals.V With this approach,
functions can be used all around the codebase, not restricting itself to a
specific context or type. Similarly, anonymous functions are supported.

Scala is much cleaner than Java, and its precise syntax means that
programs tend to be comparatively shorter. As less time may be devoted to
development, it suggests that there is more available for those unfamiliar to
comprehend the code.

2.3.3/ Pattern matchingVI

Alluded to before, pattern matching is a construct where a value is checked
against a pattern; in successful cases, it can be deconstructed. It is an
alternative to if statements and provides a compelling alternative to Java’s
switch statements.

In more depth, the match keyword succeeds a value and should offer at
least one case to compare against.

val matchTest: String = (x: Int) => x match {
 case 1 => "one"
 case 2 => "two"
 case _ => "other"
}
Figure 2.3, Pattern matching: An integer x can be passed into the
matchTest() function and its value is compared with each case – if
there is not a successful match, the compiler progresses onto the
next case. The final underscore (_) case catches all other
possible values in the Int class. Passing in matchTest(3) would
return “other”.

The mechanism can be extended further, matching on case classes as well

as type. Pattern matching is not available in Java.VII

V Source: “Scala Intro for Spark, v3” [http://mse-bda.s3-website-eu-west-

1.amazonaws.com/lectures/BDA%20Lc06%20ScalaIntroForSpark-Part2.pdf]. Accessed
October 2019.

VI The example in this section is adapted from here: “Pattern Matching | Tour of Scala |
Scala Documentation” [https://docs.scala-lang.org/tour/pattern-matching.html]. Accessed
April 2020.

VII It should not be confused with matching regular expressions against a text in Java,
where the Pattern class derives the term pattern matching, though in a completely
different context. Consult here: “Java Regex - Pattern” [http://tutorials.jenkov.com/java-
regex/pattern.html]. Accessed April 2020.

Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 15 of 44

2.3.4/ Algebraic data typesVIII

Algebraic data types complement pattern matching and structure data so
that illegal states cannot be represented. They come in two basic types:
product and sum.

final case class Foo(b1: Boolean, b2: Boolean)
Figure 2.4, Product ADT: The Boolean type (with arity 2) composed
onto another Boolean produces four possible outcomes of Foo(true,
true) through to Foo(false, false) (and an arity of 4).

Product types can act like a tuple, collecting together multiple values in

one wrapper. Case classes, where comparisons can be made on structure,IX as
opposed to reference, are often used to implement this type. The product in
the name refers to computing its arity (the values it is possible to possess) by
calculating the product of its composing types. Sum types calculate arity
according to the sum of the composing type’s arities.

sealed abstract class Command extends Product with Serializable

object Command {
 final case class Move(meters: Int) extends Command
 final case class Rotate(degrees: Int) extends Command

 def print(cmd: Command) = cmd match {
 case Command.Move(dist) => println(s"Moving by ${dist}m")
 case Command.Rotate(angle) => println(s"Rotating by ${angle}°")
 }
}
Figure 2.5, Applying algebraic data types to an example: Say you
wanted to model an object that can only move forward a specific
number of metres and rotate to a specified degree, describing it
with case classes only allows for these two types of movement. It
also lends itself to easy pattern matching.

Algebraic data types are not directly representable in Java, though

experiments have modelled lists through interfaces.X

VIII Examples obtained and definitions constructed from here: “Scala Best Practices –

Algebraic Data Types” [https://nrinaudo.github.io/scala-best-
practices/definitions/adt.html]. Accessed April 2020.

IX Source: “Case Classes | Tour of Scala | Scala Documentation” [https://docs.scala-
lang.org/tour/case-classes.html]. Accessed April 2020.

X See here for more information: “Functional Programming for Java Developers, Part 2
- Algebraic Data Types” Source:
[https://openhome.cc/eGossip/Blog/FunctionalProgrammingforJavaDevelopers2.html].
Accessed April 2020.

Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 16 of 44

2.3.5/ Existence alongside Java

As it runs on the JVM (Java Virtual Machine), Scala has access to Java’s
extensive collection of libraries and frameworks – and the interoperability
between the languages means that Scala developers can integrate their code
with Java, and vice versa. Say, one wanted to import the LocalTime library
in Java, all that is required is this:

import java.time.LocalTime

val currentTime: LocalTime = LocalTime.now()
Figure 2.6, Importing Java libraries: it is very easy to import
Java libraries as they are fully integrated.

2.3.6/ Static typing and a powerful compiler

Scala is statically-typed – this means that variable types are ascertained
at compile time, with the compiler determining if a given action is valid.XI
Statically typed languages are beneficial to programmers, as it can help to
reduce the number of mistakes and enable them to write “proper” code.
Debugging is easier, too – as it is not a dynamic language (i.e. it does not
utilise run-time operations) errors are flagged up earlier (before the program
is run), and debugging is easier. The compiler is powerful at referencing and
Scala’s type inference for variables and functions is much better than Java –
in this regard, you can avoid many of the errors associated with the latter.

val eggs: Int = 4
val nuts = 5
val pineapples: Short = 3
val minimumPineapples: Int = pineapples
Figure 2.7, Types: Because of type inference, the compiler knows
that eggs is an integer, so the Int type annotation is
unnecessary, as evidenced by the value nuts. The compiler can
convert between values as long as there is no loss of precision.
An error will always halt the program if are any issues.

XI Definition adapted from here: “What is Statically Typed? – Definition from

Techopedia.” [https://www.techopedia.com/definition/22321/statically-typed]. Accessed
October 2019.

Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 17 of 44

2.3.7/ Option handles null effectively

The null runtime exception can be completely omitted if Scala’s design
choices are taken advantage of. The container Option can be used when
returning a value that could be null – instead of an object being returned if
the associated function passes – and null if not – an instance of Option is
sent, either of the Some or None Scala class. One does not have to worry at all
about nulls, as the function signature simply declares that an Option of
some type T is being returned. It also has the advantage of providing more
meaningful information to the consumer.

def optionExample(param: S): Option[T] = {
 try {
 // Some mutation of param
 } catch {
 case e NumberFormatException => None
 }
}

optionExample(valueReturned) match {
 case Some(v) => println(v)
 case None => "I am disappointed."
}
Figure 2.8, Option: The types S and T can be anything, for example
String or Int. The second fragment pattern matches on the value
returned by optionExample() to determine which block to follow.

Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 18 of 44

2.4/ Motivations for teaching

Whilst Scala might appear to perform in a multi-faceted nature, why
should it be taught to students?

Scala is a capable language that can at least attempt to ease the transition
between Java and Haskell and, thus, the gap between object-oriented and
functional programming. The fact that it is multi-paradigm means that it
occupies a middle ground between the two coding styles – it is not, for
example, purely functional like Haskell, and so there is some leeway allowed
that will no doubt be encouraging for students new to the paradigm.

Its “beauty and elegance” [10] allows for great expression – Scala can be
used to encourage budding developers to code comparatively beautiful and
well-designed applications. With access to - and interoperability with – Java,
the most popular programming language (TIOBE Index, October 2019 [11]),
prospective learners will have access to a wide range of resources and be able
to program better code that still is extensively compatible on a large number
of devices.

Scala developers are also highly sought after in the workplace due to their
rarity and it is the second-highest paid programming language in the UK,
with average salaries reaching £85,000. [12] Businesses – like Twitter,
LinkedIn and Intel – depend on the language for their expansive mission
critical systems and students should be heartened to discover that there is
potentially a great career ahead of them with a technological company of
considerable scale. [1]

2.5/ Related work

2.5.1/ Teaching Scala to younger students

Kojo, an open source IDE supporting the Scala language, was the first
Scala-based environment for young learners to be used as an alternative to
Scratch. [13] Targeting, in Sweden, children as young as seven, and, in India,
girls between 11 and 13 years of age, through programming challenges and
three to five hour-long classes carried out weekly, respectively, Regnell and
Pant noted that the visual aid of the turtle was a natural way to start. With
just a limited subset of the language, it made concepts easier to understand:
its “orthogonality” – only one article of interest is changed, the rest is
unaffected – supports this idea, and verifies its capacity to provide an easy
starting point. Translating this to the context of a university student would
not require the visual element, but this experiment still proved that even
Scala provides some sort of accessibility to a younger audience.

Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 19 of 44

2.5.2/ Scala in higher education

Scala has already been used in higher education: Lewis uses Scala in the
Principles of Computer Science modules at the Department of Computer Science
in Trinity University, San Antonio, Texas. He indicates that though
educational resources are currently “thin” [14], there are “well over a
million” questions answered on programmer question and answer site Stack
Overflow. This, indeed, is another motivation for contributing further to the
landscape, mentioning that the language offered sound footing covering the
concepts needed for an introductory course at early undergraduate level.

Since 2013, it has “worked well” [15] at Aalto University in Espoo, Finland,
[16] where they make full use of the (declarative) functional and (the
imperative) object-oriented paradigms in their first year O1 module. They
mention that they want to offer “something fresh and a little bit different”,
and that as well as, perhaps most importantly for this project, it is possible
to design “pedagogically effective courses” that are capable of approaching
the harder topics incrementally and carefully, the staff teaching the
introductory programming are fond of the language. This will undoubtedly
diffuse onto the students and be likelier to encourage a rounded, more
enthusiastic, and enjoyable learning experience in the most ideal of cases.
Lukkarinen indicates that it is “possible” to teach concepts from both
paradigms using just a single language, thanks to a “relatively low” learning
threshold for those acquainted with Java’s syntax, and easily applicable
concepts from other languages.

2.5.3/ Describing general concepts with Scala

WebLab, a “learning management system” [17], was used by van der Lippe
et al. in teaching concepts of coding languages through Scala. Through
definitional interpreters, values can be computed from programs expressed
as abstract syntax trees to explicate the “mechanisms” underpinning the
described concepts. The lightweight approach, requiring an unexpansive
toolset, was deemed to be convenient, recognising its functional style with
algebraic data types and pattern matching and its well-developed nature
allowing for reusability.

Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 20 of 44

Chapter 3 /
 Specification and planning

3.1/ General considerations

Scala can be approached in many ways. Closely mirroring the aims, we can
hone into a short collection of concepts to be taught that would provide a
sound introduction to, and simultaneously foundation for, further study in
the language. From each viewpoint, the project seeks to answer the
accompanying questions.

• Scala as a programming language

o What is it?

o What can it do?

o What makes it preferable over Haskell?

• Scala as a multi-paradigm language

o How does it present object-oriented programming (OOP)?

 How does this compare to Java?

o How does it present functional programming (FP)?

 How does this compare to Haskell?

 Can it be approached in a transitionary way from Java?

 Can the same be said from Scala into Haskell?

 Does it effectively communicate FP concepts in a language

not as strict as Haskell?

• Scala as a teaching language

o How can it be introduced to newcomers in an accessible fashion?

o Will the language add to students’ understanding of functional

programming?

o Which is the best order to learn the languages Java, Scala, and

Haskell?

o Could Scala be added to or replace Haskell in the CS-205 module?

• Scala as a secure language

o What security does it afford?

o Can it be used to write safe programs?

Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 21 of 44

3.2/ Case study outline

The case study is composed of two parts, of which there are also two
sections.

An introductory lecture was planned to cover the fundamental points of
functional Scala, as well as easing the transition from Java. An accompanying
lab session would allow students to look further into the topics explored in
the lecture and try their hand at basic Scala.

A second lecture made available for students interested in looking at more
challenging topics was aimed at those who are more adept at programming.
Continuing with higher order function applications, implicits and interaction
with the functional Cats library were looked at, as well as introducing the idea
of using Scala as a secure language. Again, another lab session was created to
study the topics practically.

The case study was planned to be seen as a dynamic process, with a
general specification outlining what is thought to be needed at first,
developing much further, later on in the process, with a full teaching package
created.

3.3/ Evaluation criteria

To be able to draw any conclusions from the case study and the
background research, the data needed to be analysed. This would determine
whether or not the project enabled the aims to be satisfied.

A questionnaire was planned to be distributed after both streams (i.e. the
single and double lecture/lab session combinations) to consider some of the
aims, as well as more tailored questions. The questions were aimed to address
some immediately considered thoughts:

• How do you feel about Scala?
• Do you understand the functional concepts now?
• How does Scala compare to Haskell in introducing these concepts?

It was envisaged that one distribution would involve filling out the
questionnaire straight after the session, and the other pausing a short while
after to allow the students to form opinions after careful deliberation.

3.4/ Planning the project

Every project requires planning – and this one is no exception to the rule.
I sought to consider the extent of the project, expressing the basis of the
motivations and detailing the proposed structure of task execution, as well

Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 22 of 44

as mapping out where one should be by the project’s end – and indeed when
that might be the case.

3.2.1/ Steps and milestones

The parts were extracted from the specification and consolidated into
distinct groups containing milestones, significant stages in the project by
which progress could be measured.

3.2.1.1/ Part I: Background research

The first part involved collecting information to help inform the latter
sections of the project. It consisted predominantly of secondary data, using
journals, books and the internet to highlight good reasons for choosing this
discourse.

Milestone 1: Completion of Background Research
The following topics were investigated:

I.I/ How to program in Scala in an object-oriented way
I.II/ How to program in Scala according to the functional programming

paradigm
I.III/ The advantages and disadvantages of Scala
I.IV/ Is the language used for teaching? If not, can it be?
I.V/ Verification: Scala as a secure language

3.2.1.2/ Part II: Setting up and monitoring the project

This part pertained to the necessary tasks that would help initiate the
project proceedings. Such was its nature, it was completed in tandem with
the previous part and in no particular order.

Milestone 2: Completion of the Initial Document
These activities completed the second milestone:

II.I/ Discussions with project supervisor: occurring continuously
throughout the project as a control to ensure that the project was
being kept on track.

II.II/ Writing the Initial Document: this document allowed me to see where
I was and where I was going. Delivered in November 2019, it
provided the opportunity to plan out the whole project, detailing
every part of the process and giving the first qualified picture of how
it would look at the end.

3.2.1.3/ Part III: Planning the case study

The third part pulled together the gathered information to plan a case
study to collect primary data about the researched topics. The planning

Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 23 of 44

sought to frame the information into deliverables that helped comprehend it
and prepare for analysis.

Milestone 3: Completion of Case Study-Planning
This section led to completion of the third milestone:

III.I/ Determining the format of the case study: I asked myself how it
would be organised to ensure an efficient utilisation of the
conducted research and what needed to be recorded.

III.II/ Preparation of the initial lecture: what actions needed to be
collected before the lecture; what materials had to be created; and
what needed to be considered to progress onto the accompanying
lab session properly?

III.III/ Preparation of the first lab session: how would the session follow
on from the initial lecture and effectively communicate the lectured
topics in a practical manner?

III.IV/ Preparation of the advanced lecture: again, as the step before last,
but this time tailored to more advanced programmers and keen
learners.

III.V/ Preparation of the second lab session: how could it follow on nicely
from the lecture and provide a challenging enough series of lab
tasks to keep the students engaged?

III.VI/ Definition of the evaluation criteria: what points required reviewing
to best assess the case study?

III.VII/ Designing of the evaluation collection: how would the case study be
evaluated? What kind of questions should be asked in a
supplementary questionnaire distributed to the students?

The steps completed so far also fed into the next milestone,

Milestone 4: Gregynog Presentation

where I had to prepare a short presentation in front of a group of fellow

students, as well as a question and answer section.

3.2.1.4/ Part IV: Carrying out the first part of the case study

The logistical preparations needed to be thought about following on from
the planning before the initial part of the case study could be conducted, i.e.
the first lecture and lab session:

Milestone 5: Completion of the Initial Lecture and First Lab Session
These steps led to completion of the fifth milestone:

IV.I/ Booking of the venue(s): finding out where the lectures and labs
would take place, looking for available rooms with appropriate
facilities and the best time to conduct it.

Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 24 of 44

IV.II/ Publicising of the lectures and lab sessions: advertising through
various media to generate interest.

IV.III/ Conducting the first part of the case study: delivering the initial
lecture.

IV.IV/ Conducting the first part of the case study: delivering the first lab
session.

IV.V/ Student evaluation: distributing the evaluation resources, allowing
the students to review the lectures and labs.

3.2.1.5/ Part V: Carrying out the second part of the case study

This part was approached dynamically as there were additional factors to
consider ensuring the second part was conducted effectively.

V.I/ Brief self-assessment of the initial lecture: improving step II.IV
further by appraising the initial lecture and looking for things that
did not go as well as they could have and amending the advanced
lecture to reduce the chances of something similar happening again.

V.II/ Brief self-assessment of the first lab session: similarly, bettering
step II.V by adjusting the lab sheet if students struggled with any of
the lab tasks and reducing ambiguity if things were unclear and
could be rewritten.

V.III/ Assessing student feedback: using what students had to say about
the first part and modifying, if necessary, the advanced lecture and
final lab with their constructive comments from the evaluation
resource.

The following parts could not be completed because unforeseen issues,

including those relating to the coronavirus pandemic, meant that time was
significantly negatively impacted.XII

V.IV/ Conducting the second part of the case study: delivering the
advanced lecture.

V.V/ Conducting the second part of the case study: delivering the final
lab session.

V.VI/ Student evaluation: distributing the evaluation resources to allow
the students to review the lecture and lab.

Completion of those tasks would have led to the sixth milestone which,

ultimately, was only part-delivered:

Milestone 6: Completion of the Advanced Lecture and Final Lab Session

XII See 4.4/ The coronavirus effect for more details.

Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 25 of 44

3.2.1.6/ Part VI: Evaluating the collected data

Once the case study was realised, I was able to critique and look at the
whole project.

VI.I/ Self-evaluation of the case study: what did I think was done well
and what could I perhaps have done better?

VI.II/ Further evaluation of the case study: using the student evaluations
to assess the pros and cons of how the lectures and lab sessions
went.

These case study evaluation exercises meant that the seventh milestone

could be achieved –

Milestone 7: Completion of the Case Study Evaluation

– and form the basis for my primary data analysis. The eighth

milestone,7: Completion of the Case Study Evaluation

Milestone 8: Completion of the Project

could then be completed with the next step:

VI.III/ Evaluation of the project: for this, I asked myself: how did the whole
project go? Had the aims been addressed, and did I come to an acceptable
conclusion?

3.5/ Mapping out the project

The milestones and abundant steps have been expressed but can also be
framed around a more concrete timetable: the project schedule can be
illustrated through a Gantt chart, displaying the activities against time.XIII [16]
The y-axis on the left details the tasks that need to be completed. The x-axis
at the bottom comprises the dates that the project will cover. Each
rectangular bar signifies an activity, and its shape and positioning can tell us:

• when the activity starts;
• how long it is estimated to take;
• its positioning amongst the other activities (is there an overlap?); and
• when the activity should end.

XIII See: “What is a Gantt chart? Gantt Chart Software, Information, and History”

[https://www.gantt.com/]. Accessed October 2019.

Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 26 of 44

 De
sc

rip
tio

n
Ca

te
go

ry
Pa

rt
I:

Ba
ck

gr
ou

nd
 re

se
ar

ch
Se

cti
on

I.I
/ O

OP
 in

 Sc
ala

St
ep

I.I
I/

FP
 in

 Sc
ala

St
ep

I.I
II/

 Sc
ala

 pr
os

/co
ns

St
ep

I.I
V/

 Sc
ala

 in
 te

ac
hi

ng
?

St
ep

I.V
/ V

er
ifi

ca
tio

n
St

ep
1.

Ba
ck

gr
ou

nd
 R

es
ea

rc
h

Co
m

pl
et

ion
M

ile
sto

ne
Pa

rt
II:

 Se
tu

p &
 m

on
ito

rin
g

Se
cti

on
II.

I/
Di

sc
s w

/ s
up

er
vis

or
St

ep
II.

II/
 In

iti
al

Do
cu

m
en

t
St

ep
2.

In
iti

al
Do

cu
m

en
t C

om
pl

et
ion

M
ile

sto
ne

Pa
rt

III
: C

as
e s

tu
dy

 pl
an

ni
ng

Se
cti

on
III

.I/
 Fo

rm
at

St
ep

III
.II

/ I
ni

tia
l l

ec
tu

re
 pr

ep
St

ep
III

.II
I/

Fi
rs

t l
ab

 se
ss

ion
 pr

ep
St

ep
III

.IV
/ A

dv
an

ce
d l

ec
tu

re
 pr

ep
St

ep
III

.V/
 Fi

na
l l

ab
 se

ss
ion

 pr
ep

St
ep

III
.VI

/ D
ef

in
in

g e
va

lu
at

ion
 cr

ite
ria

St
ep

III
.VI

I/
Ev

alu
at

ion
 de

sig
n

St
ep

3.
Ca

se
 St

ud
y-

Pl
an

ni
ng

 C
om

pl
et

ion
M

ile
sto

ne
4.

Gr
eg

yn
og

 P
re

se
nt

at
ion

M
ile

sto
ne

Pa
rt

IV
: C

as
e s

tu
dy

 de
liv

er
y,

pa
rt

1
Se

cti
on

IV
.I/

 V
en

ue
 bo

ok
in

g(
s)

St
ep

IV
.II

/ L
ec

tu
re

 an
d l

ab
 pu

bli
cis

in
g

St
ep

IV
.II

I/
In

iti
al

lec
tu

re
 de

liv
er

y
St

ep
IV

.IV
/ F

irs
t l

ab
 se

ss
ion

 de
liv

er
y

St
ep

IV
.V/

 St
ud

en
t e

va
lu

at
ion

St
ep

5.
In

iti
al

Le
ctu

re
 an

d F
irs

t L
ab

 C
om

pl
et

ion
M

ile
sto

ne
Pa

rt
V:

 C
as

e s
tu

dy
 de

liv
er

y,
pa

rt
2

Se
cti

on
V.I

/ I
ni

tia
l l

ec
tu

re
 se

lf-
as

se
ss

m
en

t
St

ep
V.I

I/
Fi

rs
t l

ab
 se

ss
ion

 se
lf-

as
se

ss
m

en
t

St
ep

V.I
II/

 A
ss

es
sin

g s
tu

de
nt

 fe
ed

ba
ck

St
ep

V.I
V/

 A
dv

an
ce

d l
ec

tu
re

 de
liv

er
y

St
ep

V.V
/ F

in
al

lab
 se

ss
ion

 de
liv

er
y

St
ep

V.V
I/

St
ud

en
t e

va
lu

at
ion

St
ep

6.
Ad

va
nc

ed
 Le

ctu
re

 an
d L

ab
 C

om
pl

et
ion

M
ile

sto
ne

Pa
rt

VI
: E

va
lu

at
ion

s
Se

cti
on

VI
.I/

 C
as

e s
tu

dy
 se

lf-
ev

alu
at

ion
St

ep
VI

.II
/ F

ur
th

er
 ca

se
 st

ud
y e

va
lat

ion
St

ep
7.

Co
m

pl
et

ion
 of

 C
as

e S
tu

dy
 E

va
lu

at
ion

M
ile

sto
ne

VI
.II

I/
Pr

oje
ct

ev
alu

at
ion

St
ep

8.
Pr

oje
ct

Co
m

pl
et

ion
M

ile
sto

ne
VI

.IV
/ P

ro
jec

t F
air

 pl
an

ni
ng

St
ep

VI
.V/

 P
ro

jec
t F

air
 se

tu
p

St
ep

9.
Pr

oje
ct

Fa
ir

M
ile

sto
ne

M
ar

ch
Ap

ril
M

ay
Se

pt
Oc

to
be

r
No

ve
m

be
r

De
c

Jan
Fe

br
ua

ry

Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 27 of 44

3.6/ Risk analysis

As with all projects, there were possible risks (the likelihood that a hazard,
something which is harmful, will negatively impact upon someone) that
might have appeared. These hazards, and associated risks, require
understanding and planning for to reduce the chances of the project being
impaired. [18]

3.6.1/ List of hazards

The hazards that could have been encountered are outlined as follows:

I/ Students fail to understand the points trying to be communicated, thus
no meaningful evaluations can be drawn.

II/ I might find the topic of verification with Scala too difficult to
comprehend, thus reducing both the amount that can be taught and
aims that can be addressed.

III/ People do not turn up to the initial lecture, restricting my research
further.

IV/ Scala may not be available on the machines in the PC lab in the lecture
– students are therefore unable to explore the language practically and
interactively.

V/ Parts of the lecture – or indeed lab – overrun, meaning that students
either miss out on information or are late for subsequent engagements.
People scheduled to use the same room will also bear the knock-on
effects.

VI/ I come unprepared to deliver the lectures or labs – information is
either communicated poorly or not at all, and peoples’ time is wasted.

Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 28 of 44

3.6.2/ Risk assessment

With proper planning, the above hazards could, of course, be dealt with and necessary measures put in place.
Therefore, for each possible hazard, it was assigned:

• a possible contractor – the person(s) at risk XIV
• a likelihood level – how probable the hazard could occur, on a scale of 1 (unlikely) to 5 (very likely)
• a severity level – how much it could impact the study, on a scale of 1 to 5 (low to high)
• a series of control measures, XV to diminish the effects of the hazards, categorised as:

o avoidance, (A), making sure it does not happen
o minimisation or mitigation, (M), of the risk and/or the hazard, reducing the effects when it does happen
o exploitation, (E), taking advantage of the impacts when they are positive

• a subsequent likelihood level – the probability of the hazard occurring with (a)XVI control measure(s)XVI in
place.

XIV For clarity, I shall be referred to as the co-ordinator, i.e. the individual carrying out the case study.
XV As well as those listed above, there are other ways to manage risks, albeit less common. One could accept the risk if it is considered as

too unlikely to even waste time planning for, or if the impact is not that great. A risk could also be transferred to another party, although this
only tends to be the case when the project is of a multi-compositional nature, i.e. there are other groups involved. This could range from
transferral to another team to letting an insurance company assume responsibility. [26]

XVI

Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 29 of 44

Hazard Possible
contractor

Likelihood Severity Control measure(s) Subsequent
likelihood

I Students 4 (quite
likely)

5 (high
severity)

(A) The co-ordinator can endeavour to carry out detailed
research not only into the topics to be taught, but also in
effective ways to communicate the information. This
research into teaching can compose of secondary data,
through literature and the internet, and primary data,
perhaps consulting lecturers to consider the best way to
spread the information.

2 (not very)

II Co-
ordinator

3 (fairly
likely)

5 (high
severity)

(A) Detailed would certainly be very helpful.
(M) One could take a moment aside to check literature or
other resources to fully comprehend the difficult topic.

2 (not very)

III Co-
ordinator

4 (quite
likely)

5 (high
severity)

(A) Try to publicise better and create engaging
promotional materials.

3 (fairly
likely)

IV All 5 (very
likely)

5 (high
severity)

(A) Check if the machines have Scala installed. If not,
attempt to make contact with technical staff so that
students will be able to program in the lab sessions.

1 (not
likely)

V Co-
ordinator

4 (quite
likely)

4 (quite
severe)

(A) Plan well and undertake practice run-throughs to get
a sense of timings.
(M) Highlight topics not as important and reduce or
remove them to compensate.

2 (not very)

VI Students 4 (quite
likely)

5 (high
severity)

(A) Prepare more than is necessary to ensure that there is
always something to do.

2 (not very)

Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 30 of 44

Chapter 4 /
 Implementation

The approach of this project meant that a whole new application did not
need to be written from scratch. Instead, the practical nature meant that
existing code could be used and repurposed for the project’s use.

The lecture and lab sessions were the deliverables, with code fragments
specially written for each. However, the bank account example, for instance,
was taken from an existing example (see figure 4.4).

All the produced resources can be found in a GitHub repository.XVII

4.1/ Introductory Lecture and Practical Session

4.1.1/ Summary

Figure 4.1: Slide extracts demonstrating how taciturn Scala can
be. [19] The original presentation animated the gradual process
that could be taken to reduce the character use. This is, of
course, an extreme example, as there is a lot of unnecessary code
in the former, but it is there solely for comparison.

Figure 4.2: Above, the higher order list functions map and filter
were covered in the lecture, as well as flatten and flatmap.

XVII LegoKeoni/ScalaLabs on GitHub: https://github.com/LegoKeoni/ScalaLabs

Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 31 of 44

The first lecture introduced functions in Scala, and basic I/O from the
command line, progressing onto mutable and immutable lists and the higher
order operations map, filter, flatten and flatmap. The object was to
negotiate the transition from object-oriented to functional programming, so
the interplay between both paradigms was explored in the accompanying
practical session. Split into three, the first covered writing and reading, the
second lists and higher order functions, and the third writing Scala functions
to interact with existing Java code. This let the students apply the newly
learnt ideas independently.

Figure 4.3: Extensive setup instructions included on the lab
sheet, ranging from fully featured IDEs to online coding
“playgrounds”.

Figure 4.4: The lab session complemented the lecture: as well as
getting students to look at lists, tasks 9 and 12, for example,
tried to get them to apply their knowledge in a way that didn’t
likely lead to resorting to looking up the answer online.

0.II/ Setting up in the lab
∗ Find the documents here: keonidsouza.com/scala

0.II.a/ Option 1: Programming in IntelliJ
Task 1:

1. Locate and open IntelliJ in the Unified Desktop under:

Specialist Apps > College of Science > Computer Science.

2. Set up a new project under File > New > Project…, selecting the Scala
option on the left sidebar.

3. Go for an sbt-based project (which should already be selected), click Next
and then name it ScalaLabs.

4. Unfortunately, you’ll need to locate the JDK. Luckily for you, I found it
(though, it did take a surprising amount of time)! Copy in the path or
locate it here:

C:\Program Files\Java\jdk1.8.0_45.

5. Then Finish, my friend! But, that’s not the end. In the project sidebar,
inside

ScalaLabs/src/main/scala,

create a document scalaLab1.scala to work in, labelling each following
task as necessary. (You can do this by right-clicking the scala folder and
selecting New > Scala Class and naming it ScalaLab1.) Select Object
as the kind.

0.II.b/ Option 2: Programming in another IDE
Task 1:

1. You could, of course, choose your own IDE. Despite depending upon
configuration, you should still be able to compile and run your file as
follows:

>> scalac scalaLab1.scala

>> scala scalaLab1

2. Inside the Scala REPL, you are also able to load a file using :load.

>> :load "[file path]"

0.II.b/ Option 3: Programming in Scastie
Task 1:

• Scastie is an online IDE in which you can play around with Scala code. You
can link your GitHub account and save your snippets. Find it here:
https://scastie.scala-lang.org/.

• Clicking Save will compile and run your code.

• Make sure Worksheet mode is off if you want to properly simulate
standard IDE conditions.

II.I.b/ Printing from a list
Scala has three built-in operations that can be performed on a list – one of
which, isEmpty, is rather self-explanatory, returning a Boolean.

Task 9: Have a look at the below function:

def questionable(a: List[Any]) = {
 var c = 0
 a.foreach(_ => c += 1)
 if (c == 0) a
 else a(0)
}

Which built-in function does it emulate?

Run the third remaining built-in function on doorClosers and print the result.

II.I.c/ Updating a list
Task 10: In a shocking turn of events, I reason that automatic is less a type of door
closer and more of a classification. To remedy this, use -= to get rid of it.

Task 11: I realise similar can be said for emergency. This time, with postfix
notation, use remove() to delete it.

Task 12: Finally, the fragment

var doorClosersList = doorClosers.toList

provides a copy of doorClosers in list-form. Try removing another element. Is
it possible? Why/why not? How could the definition be improved?

Task 15: In a new file, BankAccountJava.java, under a new directory java in
the main folder, copy and run the code. It should return the following:

Balance in account number 1 is 15000

Balance in account number 2 is 205000

Balance in account number 3 is 150000

Task 16: In a new file, BankAccount.scala, define an object called
BankAccount and write a Scala function withdrawFunds that takes in an
account and an amount and returns a message that indicates whether the
withdrawal has been successful. Indeed, if so, the money should be deducted
from the account.

Task 17: Write a Scala function applyInterest to apply interest to a
BankAccountJava account’s balance. For the time being, use an integer
modifier. You can add a message indicating that interest has been applied if you
so wish.

Note: you should write the function within the BankAccount Scala object to
interact with the BankAccountJava object. We want you to keep the languages
separate.

Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 32 of 44

The sessions both lasted sixty minutes – one after the other – and ran to
the planned time. Seven participants joined the first run-through, with a
further ten attending the second lecture.

4.1.2/ Qualification of content

It was decided that the most important starting point was to look at
function declaration and definition, considering its focal role in the
paradigm. The power function is a simple enough example that demonstrates
the language’s minimal expression and shows that its description can be
streamlined through built-in functions.XVIII Introducing how to accept user
input intended to provide positive comparisons with Java’s interpretation
and indicate towards Scala’s lightweight approach.

Immutability – promoting unchangeable objects after creation – is a core
aspect of functional programming, but mutable objects had to be discussed
when coming from the world of Java. Thus, both types of list were introduced
in the lecture: mutable ListBuffers and immutable Lists. Higher order
functions – those which also pass in functions – were discussed through the
four aforementioned list operations.

4.2/ Advanced Lecture and Practical Session

4.2.1/ Summary

Figure 4.5: Slide extracts introducing the Eq type class,
providing a safer alternative when comparing types, and
Semigroups, effectively half a monoid. [20]

In the second series, the Cats library is explored, using type classes –

which originated from Haskell – to provide new functionality to existing
libraries, extending them without changing the original source and
bypassing inheritance. Pattern matching, algebraic data types (ADTs) and

XVIII Here, scala.math.pow(n,2) as an alternative to def square(n: Int): Int =

n*n removes the necessity of defining a new function.

Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 33 of 44

monads were also touched upon, presenting the ideas through a library
attempting to increase Scala’s functional capacity.

4.2.2/ Qualification of content

The topics were chosen as they have already been studied in the computer
science and software engineering degree programmes at the university, so
students would be aware of them. Using Cats promotes the functional
paradigm, trying not to tempt them to approach tasks in an object-oriented
fashion.

4.3/ Data collection

The process by which to obtain the mood of the participants was through
a questionnaire. The design for the first sessions was split into five sections,
with the majority of the questions requiring a response on a five-point Likert
scale (a commonly used question format where people respond to a
statement using a defined scale). It ranged, predominantly, from “I strongly
disagree” to “I very much agree” on a five-point metre, asking them how
much they agreed with the provided statement. Each question provided an
opportunity for elaboration if they so wished.XIX

Question Text Response alphabet
Section 1: Initial thoughts on Scala

1
What's your initial response to the language
Scala?

5-point scale (1: I
don’t like it → 5: I
really like it)

2 Had you heard of Scala before?
Yes, No, Don’t
know

3 How do you feel about Haskell?
5-point scale (1: I
don’t like it → 5: I
really like it)

The responses for the following questions all corresponded to a five-point

scale, with 1 being “I strongly disagree” and 5 representing “I very much
agree”.

Question Text
Section 2: The lecture and lab session

4 "The lecture presented the material in a clear fashion and was easy
to follow."

5
"The lecture presumed the right amount of difficulty for someone
who has had recent experience of functional programming in
Haskell."

XIX The questionnaire is available to view here: https://keonidsouza.com/scala

Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 34 of 44

Question Text
6 "The lecture was enjoyable."
7 "The lab session provided clear, easy-to-follow instructions."

8
"The lab session presented tasks over increasing levels of difficulty,
sufficiently challenging me."

9 "The lab session did not feel overly long."
10 "The lab session nicely complemented the lecture material."

11 "When required, I was given a suitable amount of assistance in the
lab session."

12
"I think another lecture and lab session would be great to delve into
more functional programming concepts."

Section 3: Scala and Java
13 "Scala offers a nice transition from Java to Scala."

14
"The functional and object-oriented concepts sit pleasingly side-by-
side in Scala."

15
"I like how I can interact Scala code with Java code without having to
rewrite anything (or, at the least, very little)."

16 "The transition from programming in Java to programming in Scala
is good."

Section 4: Scala vs Haskell

17
"Having used Haskell in CS-205, I feel Scala is easier to understand
than Haskell from what I looked at in the lecture/lab."

18 "Scala is easier to write than Haskell."

19
"Scala would act as a great transition language between the world of
object-oriented programming in Java and functional programming in
Haskell."

The final section provided the last opportunity to give feedback.

Question Text Response alphabet
Section 5: Bringing this to an end

20 "I think that Scala should be taught at the
university."

5-point scale (1: I
strongly disagree
→ 5: I very much
agree)

-
This time, please elaborate on your final
answer. Longer response

text box
21 Is there any other feedback you'd like to impart?

I also spoke to all participants in the lab session to gain an immediate

response to my lecture and provided tasks. Students were very open, and I
took note of all their feedback. A questionnaire for the second part of the case
study was not produced due to obstacles which shall be elaborated on in the
next section.

Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 35 of 44

4.4/ The coronavirus effect

Two lectures and two practical sessions were planned, however only the
first of each could be delivered. This was down to water damage to the
computer laboratory, and the inability to find a replacement venue – it was
planned that the first session would be run again as availability and interest
was split amongst two dates. Preceding a brief run-through of the practical
element, eventually the second attempt at the first lecture was conducted on
the video conferencing application Zoom due to the Covid-19 pandemic
necessitating government-enforced social distancing measures – this was all
after a few weeks of assessment, where I analysed how my lecturers were
conducting their lectures in the move to distance learning, and applying the
best of their techniques to my setting to optimise deliverability.

It was judged that there would be little time to carry out the second lecture
and lab session, so the materials exist alongside the former, but have not
been employed.

Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 36 of 44

Chapter 5 /
 Conclusions

5.1/ Achievements

5.1.1/ Introducing Scala into higher education

This project sought to introduce Scala to the higher education curriculum
at the university’s computer science department – currently, to the best of
my knowledge, the only other institution in the United Kingdom using the
language in this fashion is the University of Oxford in their first-year
Imperative Programming course, complementing Haskell in the module
concerning the functional equivalent. [21] With encouraging feedback to my
introduction to the language, I hope to have provided a crucial starting point
for further development and integration into the computer science courses
offered by the department.

5.1.2/ Producing an educational resource

Drawing from a teaching module I took in the first semester, I was able to
design a lecture series that asked if the content was engaging enough. The
lecture series assumes a certain level of competence – with many agreeing
that “[the] lecture presumed the right amount of difficulty for someone who
has had recent experience of functional programming in Haskell” – and
treads well, according to feedback, between varying difficulties. It was not
easy to produce a resource that satisfied these criteria, though the outcome
is proof of its competence.

5.1.3/ Getting students to consider functional programming

Conversing with my peers, they generally had a similar response to the
functional way of programming in Haskell to mine, i.e. one of getting through
the declarative programming module and leaving it behind. Upon further
thought, it seemed to me to be a wasted opportunity, so I attempted to frame
the paradigm within a context that would be more accessible and convincing.
With Scala, compared to Haskell, there was a greater level of interest in the
functional concepts and they appreciated the light-hearted delivery and
possible career prospects.

Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 37 of 44

5.2/ Analysis

5.2.1/ Addressing the aims

This project has gone through Scala as a programming language. It is a
multi-paradigm language that allows for a different way into functional
programming: as noted by a questionnaire respondent, they welcomed the
“functional concepts with a readable and intuitive syntax.” This, along with
increased employability opportunities, made it preferable to Haskell.

Someone I asked also agreed “[the] functional and object-oriented
concepts sit pleasingly side-by-side in Scala.” The simple integration of Java
libraries and invocation of their associated functions provided a nice bridge
between the languages, whilst the functional approach could generally derive
agreeably from Haskell: the functional elements translate well and its
decreased purity against it does not impede in educating the concepts in
Scala. Its lightweight syntax still supports higher order functions and
currying.

With a background in Java afforded due to the university’s curriculum,
introducing the language was more accessible than in other contexts, and
this was helped with a year’s experience coding in Java. Some argued that
Scala should replace Haskell in the CS-205 module, and another thought it
should follow Haskell, occupying a “good sweet spot” between object-
oriented and functional programming. Otherwise, using Scala as a
transitionary language was largely popular, with over three-quarters of
those I questioned agreeing with the statement.

Scala does not enjoy the same purely functional qualification as Haskell.
But there are ways in which it still maintains a high security level: its
statically typed nature means that – at compile-time – abstractions are
“used in a safe and coherent manner”, [22] ensuring type safety. Due to the
interoperability sustained with Java, Scala has to use an “explicit strong
reference type” [23] when dealing with null references, though this can be
remedied with an Option, transforming the partial function into a total
function. Option is a powerful type that can provide a backup if one is unsure
if a value will be returned, thus making the program safer when this side-
effect is not disregarded.

It has a “good default security”, as found by Dwarampudi et al. [24]: in a
comprehensive comparison with nine other languages, it matched Haskell in
terms of best default security, alongside Java and VB.NET. Scala has
automated garbage collection, and its exception handling is of an implicit
nature, affording additional security through the JVM’s Security Manager.
Usage in web applications is popular as performance is generally unsacrificed

Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 38 of 44

at the expense of “security and robustness”, and though reflection is
supported, where code can inspect itself, Scala still maintains a high level of
security.

5.2.2/ User interaction

During the practical exercise, I sat with the students and observed and
discussed their accessibility with the new interface. As many noted the
familiarity with already-observed languages (compare with Java’s syntax
and Haskell’s functional nature), they were able to get started in a short
timeframe. A couple of subjects struggled with setting up the lab using the
instructions on the guidance sheet, but this was later attributed to
misreading the text. Clarity was improved in later versions to minimise this
kind of issue, and alternative coding environments were provided, including
the lightweight online IDE Scastie which lets the users start work immediately
– as long as they have a good internet connection.

5.2.3/ Problems with multi-paradigm support

Providing concessions for object-oriented and functional programming,
whilst beneficial for exploring different paradigms in a common language
without having to learn another, does mean that a choice has to be made,
both consciously and subconsciously, by the programmer.

When using Scala in a coding assignment within a module concerned only
with functional programming, there is the temptation to blend into the other
referenced paradigm, and when evaluating such submissions, marks would
have to be deducted, as appropriate, to penalise the incorrect approach
(within the context of the module). This is something that is difficult to
prevent, but the risks can nonetheless be minimised: if students are educated
expansively on the differences between the paradigms, they should be of a
capable mind to determine which they are using. Lab classes could provide a
good opportunity to exercise the subconscious into telling the paradigms
apart and reduce the chances of this happening.

Although this would require more provisions to be made from the point
of the module co-ordinator(s), what is sacrificed through circumventing a
purely functional language like Haskell – where you can only code
functionally – reaps rewards in other ways. Students can become more aware
in their programming – if they are able to distinguish between paradigms,
they can become better programmers through avoiding the temptation of
imperative programming. There are also many more job opportunities
available: searches for functional programming roles in industry return far
more Scala results –there were 1522 permanent jobs citing Scala as a
development language according to insights firm IT Jobs Watch, compared

Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 39 of 44

to 69 in the six months leading up to May 2020.XX If purity is preferred over
employability, this is not as convincing a point to students wanting to pursue
a career in software development: Scala provides a respectable middle
ground, with companies such as Netflix (in their search algorithms and
recommendations) and Airbnb (due to its scalability, fault tolerance and fast
process times) implementing the language without having to sacrifice too
much in terms of performance. [25]

5.2.4/ Obstacles and their management

The scale of the project, at times, I underestimated and, for which, I did
not allow enough time, in retrospective: it took me longer than I thought to
construct, suitably, the introductory sessions so that it was the right balance
between accommodating those who struggled with the ideas surrounding
functional programming, and satisfying enough those who would have found
it too easy. My supervisor helped devise an apposite template, which I then
described in ways I hoped were engaging to students whilst still applying and
framing the concepts in useful ways. With light doses of humour, and an
appropriate level of enthusiasm, I aimed to replicate the ostensibly successful
– for seven years – approach such is that found at Aalto UniversityXXI.

It was the first they had seen of Scala for the vast majority of participants
and it was pleasing for students to take my introduction so well. Quoting from
informal conversations I had, they liked Scala’s “familiar” approach and
preferred this experience over that of Haskell – they were able to “get up and
running” fairly quickly and one, confirming a general consensus, stated that
Scala should “replace one of the languages in [the] declarative programming
[module]”.XXII

Whilst I was happy with the physical response – many were keen to
express their apparent delight at this language new to them – there was little
engagement with the questionnaire. In seeking to address criticisms of “only
[measuring] immediate reactions to learning a new language”XXIII, I added a
delay to the first cohort, allowing them a week before the questionnaire was
online to gather their thoughts and think more deeply about the comparisons
with Haskell. This, it is now obvious, did not prove to be a successful
endeavour. Despite communicating via university email, the response was

XX Across all permanent jobs advertised in the UK, Scala has a more than 180%

advantage over Haskell. [27] [28]
XXI cf. “something fresh and a little bit different” [15]
XXII At least four students opted for Scala’s inclusion, when prompted.
XXIII Comments made in response to the preliminary survey design in my Initial

Document, a paper produced in November 2019 to record progress before an accompanying
presentation at the third-year retreat, the Gregynog Colloquium in mid Wales.

Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 40 of 44

paltry. In hindsight, the survey could have been designed better: spread
across five parts, though it mainly included Likert scale responses, the sheer
extent of the whole may well have proved to be a reason to retreat for
prospective respondents, with one telling me that it was “too long”.
Nonetheless, the more interactive approach of communicating directly
through the medium of voice afforded me all I, personally, needed to
construct an ample argument – though, perhaps, not with adequate
academic rigour, one should admit.

Problems with the conducting venue – there was a water leak in one of
the lab rooms – meant that there was difficulty in holding the second run-
through of the first lecture and practical. Having to postpone it due to
conflicting arrangements led to ambiguous email communication and, both
interest in and the likelihood of, holding the sessions became increasingly
unlikely.

The state of the world provided an unlikely second obstacle in the project,
through the coronavirus pandemic, however, once all students become
acclimatised to the new normal of online lectures I was able to deliver the
lecture again a couple of months after the first. Though this was not without
some modifications, as the practical element could not be as optimally
delivered as it would have been if I were in a singular room with the students
working away independently on separate, but geographically close, screens.
On reflection, perhaps adapting the lab sheet into a quiz using a service like
Kahoot! would have been more productive and a more reliable indicator of
understanding.

Finally, and this is constant regret, I wish I had been more thorough in
my research and completed this part earlier in the process. It was only
towards the latter portion of the project that I found most of my scientific
references, as these were severely lacking at the start, and these ended up
being considerably more helpful than the web resources.

Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 41 of 44

5.3/ Further work

Were this project fortunate to have been afforded more time, I would have
carried out the second part of the course and observed first-hand students’
responses to more difficult concepts in Scala. A third part might also have
been useful in including parts that I had to omit for brevity and reforming it
all into an interactive tutorial series to host on, say, YouTube would have
been an aspirational remark, enabling the inclusion of students with less or
indeed no prior knowledge of the functional paradigm.XXIV

Integrating into the lecture series, on an experimental basis, some Scala
alternatives into the existing declarative programming module would have
been a great thermometer test to gauge students’ understanding, comparing
and contrasting responses.

Having enrolled onto a placement module where I was seconded at a
primary school to educate pupils about computer science, were the setting a
secondary school it would have been an interesting test to see if the paradigm
enforced a comprehensibility at an early stage in their computing education
and if they became better programmers as a result (though this would be the
foundation for a longer-form case study that would have required
exponentially greater planning and arrangements).

I only explored the Cats library in my project as it seemed appropriately
comprehensive and there was a lot of supporting documentation to aid my
research. I would also have liked to look at scalaz, an alternative functional
programming library, if the time allowed.

XXIV This, of course, does not exclude the possibility of doing so, regardless.

Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 42 of 44

Chapter 6 /
 Bibliography

[1] “Scala – Reviews, Pros & Cons | Companies using Scala,”
[Online]. Available: https://stackshare.io/scala. [Accessed October
2019].

[2] “Cats: Lightweight, modular, and extensible library for
functional programming,” [Online]. Available:
https://typelevel.org/cats. [Accessed October 2019].

[3] M. Odersky, L. Spoon and B. Venners, Programming in Scala,
California: Artima Press, 2008.

[4] M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Maneth, S.
Micheloud, N. Mihaylov, M. Schinz, E. Stenman and M. Zenger, “An
Overview of the Scala Programming Language, 2e.,” 2015.

[5] B. Venners and F. Sommers, “The Origins of Scala: A
Conversation with Martin Odersky, Part I,” 4 May 2009. [Online].
Available:
https://www.artima.com/scalazine/articles/origins_of_scala.html.
[Accessed October 2019].

[6] M. Odersky, “Scala's Prehistory,” 2008. [Online]. Available:
https://www.scala-lang.org/old/node/239.html. [Accessed October
2019].

[7] R. S. Aggarwal, “10 top Programming Languages in 2019 for
Businesses,” 2019. [Online]. Available: https://codeburst.io/10-top-
programming-languages-in-2019-for-developers-a2921798d652.
[Accessed October 2019].

[8] M. Odersky, P. Altherr, V. Cremet, G. Dubochet, B. Emir, P.
Haller, S. Micheloud, N. Mihaylov, A. Moors, L. Rytz, M. Schinz, E.
Stenman and M. Zenger, “Scala Language Specification,” 2006.
[Online]. Available: https://www.scala-
lang.org/files/archive/spec/2.13. [Accessed October 2019].

[9] “Uses of Scala | Top 10 Useful Uses Of Scala In Real World,”
[Online]. Available: https://www.educba.com/uses-of-scala/.
[Accessed October 2019].

Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 43 of 44

[10] A. Devlin, “"I was reminded of how I fell in love with Scala’s
beauty and elegance" - Signify Technology,” [Online]. Available:
https://www.signifytechnology.com/blog/2019/06/i-was-
reminded-of-how-i-fell-in-love-with-scalas-beauty-and-
elegance. [Accessed April 2020].

[11] “TIOBE Index | TIOBE – The Software Quality Company,”
[Online]. Available: https://www.tiobe.com/tiobe-index. [Accessed
October 2019].

[12] S. Butcher, “The UK's best-paying technology jobs and coding
languages,” [Online]. Available:
https://news.efinancialcareers.com/fi-en/3002150/pay-for-
developers-uk. [Accessed October 2019].

[13] B. Regnell and L. Pant, “Teaching programming to young
learners,” 2014.

[14] M. C. Lewis, D. Blank, K. Bruce and P. Osera, “Uncommon
Teaching Languages,” 2016.

[15] “Frequently Asked Questions | Ohjelmointi 1 | A+,” 2018.
[Online]. Available: https://plus.cs.aalto.fi/o1/2018/wNN/faq/#the-
scala-language. [Accessed April 2020].

[16] A. Lukkarinen, “Supporting Media Computation in
Programming Education,” 2016.

[17] T. van der Lippe, T. Smith, D. Pelsmaeker and E. Visser, “A
Scalable Infrastructure for Teaching Concepts,” ACM, 2016.

[18] “What is the difference between a ‘hazard’ and a ‘risk’?,”
[Online]. Available: https://worksmart.org.uk/health-
advice/health-and-safety/hazards-and-risks/what-difference-
between-hazard-and-risk. [Accessed October 2019].

[19] “Scala – Functions – Tutorialspoint,” [Online]. Available:
https://www.tutorialspoint.com/scala/scala_functions.htm.
[Accessed October 2019].

[20] N. Welsh and D. Gurnell, Scala with Cats, Brighton: Underscore
Consulting LLP, 2017.

Exploring Scala for teaching functional programming and writing securely

Keoni D’Souza | Swansea University, Department of Computer Science | Page 44 of 44

[21] “Imperative Programming Parts 1 and 2,” [Online]. Available:
https://www.cs.ox.ac.uk/teaching/courses/2019-
2020/imperativeprogramming1/. [Accessed April 2020].

[22] “Introduction | Tour of Scala | Scala Documentation,” [Online].
Available: https://docs.scala-lang.org/tour/tour-of-scala.html.
[Accessed April 2020].

[23] Anler, “Type safe Scala — Don’t use null - Anler - Medium,” 3
June 2017. [Online]. Available: https://medium.com/@anler/type-
safe-scala-dont-use-null-3a1420b2a9d8. [Accessed April 2020].

[24] V. Dwarampudi, S. S. Dhillon, J. Shah, N. J. Sebastian and N. S.
Kanigicharla, “Comparative study of the Pros and Cons of
Programming languages,” 2010.

[25] A. Periel, “How Tech Giants Use Scala — SysGears,” 23
September 2019. [Online]. Available:
https://sysgears.com/articles/how-tech-giants-use-scala/.
[Accessed April 2020].

[26] “5 Ways To Manage Risk,” [Online]. Available:
http://www.dbpmanagement.com/15/5-ways-to-manage-risk.
[Accessed October 2019].

[27] “Scala jobs, average salaries and trends for Scala skills | IT Jobs
Watch,” [Online]. Available:
https://www.itjobswatch.co.uk/jobs/uk/scala.do. [Accessed May
2020].

[28] “Haskell jobs, average salaries and trends for Haskell skills | IT
Jobs Watch,” [Online]. Available:
https://www.itjobswatch.co.uk/jobs/uk/haskell.do. [Accessed May
2020].

A final word
Many thanks for taking the time to read this report. I hope it was an

acceptable balance between interesting and uninteresting.

	Abstract
	Chapter 1 / Introduction
	Chapter 2 / Background & Related work
	Chapter 3 / Specification and planning
	0BMilestone 1: Completion of Background Research
	1BMilestone 2: Completion of the Initial Document
	2BMilestone 3: Completion of Case Study-Planning
	3BMilestone 4: Gregynog Presentation
	4BMilestone 5: Completion of the Initial Lecture and First Lab Session
	5BMilestone 6: Completion of the Advanced Lecture and Final Lab Session
	6BMilestone 7: Completion of the Case Study Evaluation
	7BMilestone 8: Completion of the Project
	Chapter 4 / Implementation
	Chapter 5 / Conclusions
	Chapter 6 / Bibliography

